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MARCINKIEWICZ INTEGRALS, HARMONIC MEASURE AND

SOME REMOVABILITY PROBLEMS

IGNACIO URIARTE-TUERO

Abstract. We deal with some applications of Marcinkiewicz integrals to

problems related to harmonic measure on the one hand, and to removabil-

ity problems for Sobolev spaces and quasiconformal mappings on the other

hand. Techniques of this type have been used by Carleson, Jones, Makarov,

Smirnov... to address these problems, and as a general program to understand

harmonic functions on complicated domains in Rn.

1. Introduction

We review some results on the relationship between harmonic measure, Marcinkiewicz
integrals and Sobolev and quasiconformal removability problems, and announce
some new results, with some comments on the proof.

The paper is structured as follows: Section 2 covers a preliminary background on
harmonic measure for the benfit of the reader who is not familiar with the subject.
Section 3 covers some specifics of the relationships between harmonic measure,
Marcinkiewicz integrals and Sobolev and quasiconformal removability problems.
In particular it reviews some of the fundamental theorems by Jones and Makarov,
gives a proof of Beurling’s estimate for the convenience of the reader, and announces
(and briefly comments on the proof of) results that appeared in the author’s thesis
in this area.

Letters such as A,B,C, c1, etc. denote positive constants. The same letter in
two sides of an inequality need not denote the same constant. The symbol X ∼ Y
means that there are constants A,B such that X ≤ AY ≤ BX.

2. Background on harmonic measure

Let Ω ⊂ Rn be an open connected set with sufficiently large boundary ∂Ω (e.g.
assume that the Hausdorff dimension dimH(∂Ω) > n − 2). Then the Dirichlet
problem can be solved on Ω, i.e., for any continuous F ∈ C(∂Ω) there is a harmonic

function F̃ (∆F̃ = 0) on Ω with F̃ = F on ∂Ω. (Technical problems arise if n > 2
and Ω is unbounded). The Riesz representation theorem shows that there exists a
unique probability measure ωz (so called harmonic measure) supported on ∂Ω such
that, for F ∈ C(∂Ω) and z ∈ Ω,
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(2.1) F̃ (z) =

∫

∂Ω

F (x)dωz(x).

Forgetting technical problems, whenever this procedure works, the harmonic
measure of A ⊆ ∂Ω with respect to z ∈ Ω, denoted by ω(z,A,Ω) = ωz = ω,
can be defined. As a function of z, it is harmonic (hence the name), it satisfies
0 ≤ ω(z,A,Ω) ≤ 1, and, by Harnack’s inequality, for every z1, z2 ∈ Ω, there exists
a constant c = c(z1, z2) such that

(2.2)
1

c
ω(z1, A) ≤ ω(z2, A) ≤ cω(z1, A).

In other words, if z1, z2 ∈ Ω, then ωz1 and ωz2 are mutually absolutely continu-
ous.

A physical interpretation is that ω(z,A,Ω) is the Coulombic potential at z ∈ Ω
when the distribution of charges in ∂Ω is given by F = χA, the characteristic
function of A. We will mainly address here the situation of very irregular surfaces
(which arise, e.g. in batteries).

The harmonic measure ωz has different equivalent descriptions depending on the
situation. In the case of the disk, D = {z ∈ C : |z| < 1}, we have that

(2.3) ω0(A) =
1

2π

∫

A

|dζ| = Λ(A)

2π

where A ⊂ T = ∂D, and Λ(A) is the length (one dimensional Hausdorff measure
of A), i.e. it is the normalized total angle under which the set A is seen from 0.
Harmonic measure is conformally invariant, so, if G is a simply connected domain
with locally connected boundary and f maps D conformally onto G, then f extends
continuously to the closed unit disk, D by Caratheodory’s theorem, and then, for a
Borel set A ⊂ ∂G we have that harmonic measure is given by the push forward of
normalized Lebesgue measure on T, i.e.

(2.4) ω(z,A,G) = ω(f−1(z), f−1(A),D).

In particular, if G = D, then, taking as f a Moebius automorphism of D, we get
from (2.3) and (2.4) that harmonic measure is given by the Poisson integral of the
characteristic function of A, i.e.

(2.5) ω(z,A,D) =
1

2π

∫

A

1− |z|2
|ζ − z|2 |dζ|.

We already mentioned above the definition of harmonic measure for “nice” do-
mains in Rn as it arises in the solution of the Dirichlet problem, as in (2.1). A

consequence of that formula is that, if F = χA for A ⊂ ∂Ω, then F̃ (z) = ωz(A).
If ∂Ω ⊂ Rn is smooth, then harmonic measure is absolutely continuous with

respect to surface measure dωz << dσ, and its Radon-Nikodym derivative with
respect to surface measure is given by the normal derivative of the Green’s function

of Ω with pole at z, i.e. dωz
dσ = −∂G(ζ,z)

∂nζ
.

For a compactly supported planar signed measure µ one can define its energy as
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(2.6) I(µ) =

∫ ∫
log

1

|z − ζ|dµ(ζ)dµ(z),

provided that

(2.7)

∫ ∫ ∣∣∣∣log
1

|z − ζ|

∣∣∣∣ d|µ|(ζ)d|µ|(z) <∞.

Then, if P (E) is the set of all Borel probability measures supported on the
compact set E, there exists a unique measure µE so that I(µE) = inf {I(σ) : σ ∈
P (E)}, called the equilibrium distribution of E. And if the compact set E = Ωc,
then µE = ω(∞, ·,Ω).

In the context of complex dynamics, harmonic measure also is important, since
it is the invariant measure for a Julia set of a polynomial. A particularly intuitive
description of harmonic measure was proved by Kakutani, namely that ω(z,A,Ω)
is the probability that a Brownian motion conditioned to start at z will first hit ∂Ω
in A.

3. Harmonic Measure, Marcinkiewicz Integrals and Removability
Problems

Many problems in potential theory and complex analysis can be reduced to
estimating ω(z,A,Ω) in terms of geometric information about the set A (such as
the smoothness of ∂Ω, or the Hausdorff dimension dimH(A)). In this direction,
Øksendal [Ø1] showed that ω and mn (Lebesgue n-measure) are always mutually
singular (ω ⊥ mn). If ∂Ω is very complicated, most of it is “hidden” and hence
unlikely to be hit first by Brownian motion, so Øksendal [Ø2] conjectured that in
R2, harmonic measure is singular with respect to the s-Hausdorff measure (Hs ⊥ ω)
for s > 1. Carleson [C1] proved it for Cantor sets with dynamical methods. Then,
Makarov [M] proved it for simply connected domains Ω ⊆ R2. He actually showed
much more, since he gave a gauge function for the support of ω, showing that
dimH(supp(ω)) = 1. Jones and Wolff [JW] solved the problem for general domains
in R2 by proving that dimH(supp(ω)) ≤ 1. Later Wolff [W1] showed that supp(ω)
is contained in a set of σ − finite H1 measure.

In the case of Rn, Bourgain [B] showed that there is a constant ω(n) < n such
that ω ⊥ Hs for s > ω(n). Hence, ω(2) = 1. Wolff [W2] showed that ω(3) > 2,
and thus ω(n) > n − 1 for any n ≥ 3. Carleson, Jones and Makarov ([CJ], [JM])
studied ω using geometry and complex analysis. Carleson and Jones ([CJ]) used an
estimate essentially due to Beurling (generalized by Jones and Makarov in [JM])
and suggested studying Beurling’s estimate by using the Marcinkiewicz integrals Iλ,
where λ > 0, (see [S]) which were refined for λ = 0 by Jones and Makarov ([JM]) to
get sharp estimates for ω. More precisely (see [JM]), Beurling (essentially) showed
that if Ω ⊂ C is a simply connected domain, and ωa is the harmonic measure with
basepoint a ∈ Ω, assuming |ζ − a| ≥ 1, r ≤ 1

2 , we have

(3.1) ωaB(ζ,
r

2
) ≤ C exp

{
−1

2

∫ 1

r

dt

d(ζ, t)

}

where
d(t, ζ) = max{δ(z) : z ∈ Ω, | ζ − z |= t},
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and

δ(z) = dist(z, ∂Ω),

and C is an absolute positive constant. Geometrically, d(t, ζ) is comparable to
the sidelength of the largest Whitney cube (in the Whitney decomposition of Ω)
intersecting the set {z ∈ Ω, | ζ − z |= t}.

We will first sketch a relationship between Beurling’s formula and the integrals of
Marcinkiewicz, as developed in [JM], to get very sharp results on harmonic measure
(and on many other related mathematical objects). Later we will give a sketch of
the proof of Beurling’s formula (essentially proved in [CJ]), in case the reader is
not familiar with it. It should be noted that [JM] generalize Beurling’s formula
for the non-simply connected or multidimensional case and use its relation with
Marcinkiewicz integrals in the way we will describe for the simply connected case
to get the aforementioned results on harmonic measure also in these more general
cases.

In R2, (the definition is similar in Rn), the Marcinkiewicz integral Iλ with λ > 0
is defined as

(3.2) Iλ(ζ) =

∫

Ω

δλ(z)

|z − ζ|2+λ
dm2(z),

These integrals satisfy L1 and BMO-type estimates, namely (see [S],[Zy]), Iλ(ζ) <
∞ almost everywhere on Ωc, and

(3.3)

∫

Ωc
Iλ(ζ)dm2(ζ) ≤ C

λ
m2(Ω)

where m2 is the planar Lebesgue measure, and if, say, we consider our universe
to be [0, 1]2, i.e. take Ω ⊂ [0, 1]2 and Ωc ⊂ [0, 1]2, then, with universal costants,

(3.4) m2{ζ ∩ [0, 1]2 : Iλ(ζ) > t} ≤ Cm2(Ω) exp{−ctλ}
By changing to polar coordinates and just keeping the contribution of the largest

Whitney cube hit at each radius, one can see that, for an absolute constant c1,

(3.5) Iλ(ζ) ≥ c1
∫ ∞

0

d1+λ(ζ, t)dt

t2+λ
.

Now, as in [JM], using first Hölder’s inequality and then (3.5), we get that

| log r| =
∫ 1

r

dt

t
≤
(∫ 1

r

d1+λ(ζ, t)dt

t2+λ

) 1
2+λ

(∫ 1

r

dt

d(ζ, t)

) 1+λ
2+λ

≤

≤
(
c−1
1 Iλ(ζ)

) 1
2+λ

(∫ 1

r

dt

d(ζ, t)

) 1+λ
2+λ

(3.6)

Therefore, using (3.1), [JM] get

(3.7) ωaB(ζ,
r

2
) ≤ C exp

{
−const.[Iλ(ζ)]−

1
1+λ | log r| 2+λ

1+λ

}
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From here, it is clear that upper bounds for the Marcinkiewicz integrals Iλ (as in
(3.3) and (3.4)) will give upper bounds for harmonic measure. The best estimates
using this approach would be obtained if one could make λ = 0, however the most
obvious attempt to do so, namely to substitute λ = 0 on (3.2) (let us denote such an
integral by I0

0 ) is hopeless, since one can build a Cantor type set K = Ωc ⊂ [0, 1]2

so that I0
0 (ζ) =∞ on all ζ. A further attempt, namely to substitute λ = 0 on the

right hand side of (3.5) (making the upper limit of integration equal to 1 instead
of ∞ if Ωc ⊂ [0, 1]2, since that is the most relevant region of integration), denoted
by I0, is also hopeless, since one can build a set Ω ⊂ [0, 1]2 consisting of a union of
vertical strips, so that

∫
Ωc
I0 =∞.

A “correct” definition for the case λ = 0 seems to be ([JM])

(3.8) Ĩ0(ζ) = inf
∆

∫

∆

d(t, ζ)

t2
dt,

where the inf is taken over all ∆ ⊂ R+ with logarithmic density at least 1
2 in the

sense that

(3.9)

∫

∆∩[r,1]

dt

t
≥ 1

2
log

(
1

r

)
if r ≤ r0.

By “correct” we mean that the analogues of (3.3) and (3.4) continue to hold.
More explicitly, we have the following

Theorem (Jones, Makarov). If Ω ⊂ [0, 1]n, then

‖ Ĩ0 ‖L1(Ωc∩[0,1]n)≤ C | Ω |
| {z ∈ Ωc ∩ [0, 1]n : Ĩ0(z) > t} |≤ C | Ω | e−ct

With this theorem, and using the approach sketched above (as in (3.6), but the
integrals instead of being on [r, 1] are on [r, 1] ∩∆, and using (3.9)), one gets

Theorem (Jones, Makarov). 1) Let ω be a harmonic measure in Rn. Then, mn-
a.e. the following holds:

∀M > 0, ωB(., r) = O

(
exp

{
−M log

n
n−1

1

r

})
, as r → 0.

2) For any function M = M(r) satisfying M(r) → ∞ as r → 0, there exists a
domain Ω ⊂ Rn with mn(∂Ω) > 0, and for any x ∈ ∂Ω,

ωB(x, r) ≥ exp

{
−M(r) log

n
n−1

1

r

}
,

as r → 0, infinitely often.

Theorem (Jones, Makarov). Let χ = χ(t) be an increasing function in a neigh-
borhood of +∞. Then

ωB(x, r) ≤ exp

{
−χ
(

log log
1

r

)(
log

1

r

) n
n−1

}
,

infinitely often, mn-a.e., for every harmonic measure ω in Rn, if and only if

∫ ∞ dt

χ(t)n−1
=∞
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Theorem (Jones, Makarov). 1) Let ω be the harmonic measure of any domain in
Rn. Then, for any K ≥ 1, the relation

ωB(., r) = O(rK)

holds everywhere except for a set of dimension n− c1K
−n+1, where c1 = c1(n) is a

positive dimensional constant.
2) For any K ≥ n, there exists a domain Ω ⊂ Rn satisfying

dim∂Ω ≥ n− c2(n)K−n+1,

and

ωB(x, r) ≥ const. rK , for all x ∈ ∂Ω.

Using these powerful tools, Jones and Makarov were also able to get applications
to questions about conformal mapping, more particularly questions about singular-
ity of boundary distortion, area and dimension of the boundary, and integral means
(see [JM]).

Remark. Let us now sketch a proof of Beurling’s formula, in case the reader is
not familiar with it. The formula is a consequence of a theorem due to Beurling,
however, the argument we will present appears (essentially) in [CJ]. Somewhat
independently, while discussing about Beurling’s formula and its applications in
[JM], Garnett and Koosis (personal communications) showed us essentially the
same proof, but with some variations that we will also sketch.

Proof. (Of Beurling’s formula in the simply connected case). For a simply connected
Ω ⊂ C, pick a ∈ Ω, let ζ ∈ Ωc, with dist(a, ζ) ≥ 1, and let τ = {z ∈ Ω : |z−ζ| = r0},
with r0 small in comparison to dist(a, ζ). For each r, r0 < r < dist(a, ζ), let γr be
the arc about ζ of radius r, lying in Ω (save for its endpoints), separating a from ζ.
Then d(ζ, r) ≥ max{dist(z, ∂Ω) : z ∈ γr}. Then, for any z0 ∈ τ , denoting by GΩ

the Green’s function in Ω, we have

(3.10) GΩ(z0, a) ≤ C exp

{
−C0

∫ dist(a,ζ)

r0

dr

d(ζ, r)

}

To see (3.10) we will give the following argument shown by Koosis (which is the
same argument that had appeared before in [CJ], see also [GM] pp.120ff). Map Ω
conformally onto D, taking a to 0 and z0 to b ∈ [0, 1]. Then GΩ(z0, a) = GD(0, b),
and hΩ(z0, a) = hD(0, b), the hyperbolic distance from 0 to b in D.

Then GD(0, b) = log
(

1
b

)
∼ 1− b, as long as |b| is not small. Also, as long as |b|

is not small,

hD(0, b) =

∫ b

0

dx

1− x2
=

1

2
log

1 + b

1− b = log
1√

1− b
+O(1)

Hence, GΩ(z0, a) = GD(0, b) ∼ e−2hD(0,b) = e−2hΩ(z0,a).
In order to find hΩ(z0, a), integrate the element of hyperbolic length in Ω along

a hyperbolic geodesic Γ in Ω, joining a to z0. Notice that the element of hyperbolic
length at any point z ∈ Ω is |f ′(z)||dz|, where f : Ω → D is the Riemann map
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taking z to 0. From Schwarz’ lemma and Koebe’s 1
4 theorem, we know that, for

two (known) numerical constants A(= 1
4 ) and B,

A

dist(z, ∂Ω)
≤ |f ′(z)| ≤ B

dist(z, ∂Ω)

Using polar coordinates with pole at ζ, we have |dz| ≥ dr along Γ, and if Γ
crosses γr at zr, then dist(zr, ∂Ω) ≤ d(ζ, r), this being best possible. So hΩ(z0, a) ≥
A
∫ dist(z0,a)

r0
dr

d(ζ,r) , yielding (3.10). (Notice that, if Ω is symmetric with respect to

the line joining z0 and a, then Γ can be taken to be the line segment joining those
two points, and we have the reverse inequality, with B standing in place of A, i.e.
(3.10) is sharp).

The other important element in the proof of Beurling’s formula that we are
sketching is the relation

(3.11) ωaB(ζ,
r

2
) ≤ C max{GΩ(z1, a) : z1 ∈ Ω, |ζ − z1| = r}

The proof of (3.11) can be given essentially by Pfluger’s estimate ([CJ],[JM]),
however we will present an argument shown to us by Garnett (see also [GM]
pp.120ff), and comment on a variation of it due to Koosis. Although Beurling’s
formula as stated is valid for simply connected domains, the relation (3.11) holds
in a more general setting (namely Ω a domain with cap(Ωc) > 0), and we will prove
it in such a setting.

As a first step, consider Ω a bounded finitely connected Jordan domain with
smooth boundary (C1+α with α > 0 will do, see e.g. [GM].) Let ψ ∈ C∞(B(ζ, 3r

4 )),

0 ≤ ψ ≤ 1, ψ(z) = 1 on B(ζ, r2 ), and |∆ψ| ≤ C
r2 (which can be obtained by rescaling

a bump function supported on B(ζ, 1).)

Now, since ∂Ω is C1+α, and since ∂GΩ(a,ξ)
∂nξ

< 0 we get

ωa(∂Ω ∩B(ζ,
r

2
),Ω) =

∫

∂Ω∩B(ζ, r2 )

− ∂GΩ(a, ξ)

∂nξ

ds(ξ)

2π
≤

≤ − 1

2π

∫

∂Ω

ψ(ξ)
∂GΩ(a, ξ)

∂nξ
ds(ξ) =

1

2π

∫ ∫

Ω

GΩ(a, ξ)∆ψ(ξ)dξ

by Green’s formula, taking into account the vanishing properties of ψ and the
harmonicity and boundary values of GΩ(a, ξ).

Now, since ψ = 0 outside B(ζ, 3r
4 ), and since GΩ(a, ξ) is harmonic in ξ ∈

B(ζ, 3r
4 )∩Ω and extends continuously to B(ζ, 3r

4 )∩Ω, and GΩ(a, ξ) = 0 if ξ ∈ ∂Ω,
by the maximum principle we get

1

2π

∫ ∫

Ω

GΩ(a, ξ)∆ψ(ξ)dξ =
1

2π

∫ ∫

Ω∩B(ζ, 3r4 )

GΩ(a, ξ)∆ψ(ξ)dξ ≤

≤ 1

2π

C

r2
π

(
3r

4

)2

max
ξ∈B(ζ, 3r4 )∩Ω

GΩ(a, ξ) = C sup
|ζ−ξ|= 3r

4
ξ∈Ω

GΩ(a, ξ).

which finishes the proof in case Ω is a bounded finitely connected domain with
C1+α boundary.

Now we have to approximate a general Ω (meaning cap(Ωc) > 0) by such do-
mains. Since the estimates and constants are independent of the domain, the result
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will follow from the case we just proved. As a remark, if Ω were a simply connected
planar domain, we could easily approximate Ω by Ωr = f(Dr) where f : D→ Ω is
the Riemann map and Dr = {|z| < r} for r < 1.

In the general case, if Cn denotes the collection of closed dyadic cubes of size
2−n in the plane, we can take Dn =

⋃
Q∈Cn,Q⊂ΩQ. Then Dn are finitely connected

Jordan domains which increase to Ω. There is a subsequence of them so that
∂Dnj ∩ ∂Dnj+1

= ∅. Take that subsequence and fit a C2 curve in between ∂Dnj
and ∂Dnj+1

(e.g. by using splines or by taking the surface measure on ∂Dnj+1
,

considering F1 its Riesz potential of order 1 and applying the implicit function
theorem when sufficiently close to ∂Dnj+1

, in order to avoid the critical points of
F1, which gives a C∞ curve.) In any case, we have a sequence of bounded finitely
connected Jordan domains with smooth boundary Ωn ⊂ Ωn ⊂ Ωn+1 which increases
to Ω (with the obvious modification if Ω is not bounded.)

Then, by Harnack and the maximum principle, GΩn(z, a)↗ GΩ(z, a), assuming
cap(Ωc) > 0. Also, ωΩn(a, .) ⇀ ωΩ(a, .), i.e. we have weak-star convergence, and
the weak-star limit is unique and does not depend on the sequence Ωn. Conse-
quently, since the constants do not depend on the domain, and weak-star conver-
gence of measures is lower semicontinuous on open sets, we get

ωa(∂Ω ∩B(ζ,
r

2
),Ωn) ≤ C sup

|ζ−ξ|= 3r
4

ξ∈Ωn

GΩn(a, ξ) ≤ C sup
|ζ−ξ|= 3r

4
ξ∈Ω

GΩ(a, ξ)

and passing through an intermediate open ball with center ζ and radius 5r
8 to make

use of the aforementioned lower semicontinuity, we get the desired conclusion (3.11).
P. Koosis showed us another proof which is a variation of this argument, which

we sketch now. Take the same bump function ψ. Apply Jensen’s formula (con-
sider a smooth function as a difference of subharmonic functions thinking of their
Laplacian) to get

ψ(a) =

∫

∂Ω

ψ(ξ)dωa,Ω(ξ)− 1

2π

∫ ∫

Ω

(∆ψ)(ξ)GΩ(ξ, a)dxdy

Now use that ψ ≥ 0, that ψ = 0 for ξ ∈ ∂Ω with |ξ − ζ| > r and ψ = 1 for
ξ ∈ ∂Ω with |ξ − ζ| < r

2 to get

ωa,Ω(B(ζ,
r

2
)) ≤ 1

2π

∫ ∫

Ω

(∆ψ)(ξ)GΩ(ξ, a)dxdy

and again estimate the integral over Ω by the integral over B(ζ, 3r
2 ), and proceed

as before.
�

Jones and Smirnov, [JS], used tools related to Ĩ0 to get sufficient conditions for
the Sobolev and (quasi)conformal removability problems. These kind of problems
and their applications and tools had been studied, among others, in [AB, Be, Bi,
C1, C2, G, GS1, GS2, Je, Jo, Ka, Ko, KW, PR, U, W]. Please see also the references
for a necessarily incomplete list of other related papers, and [AH], [IM], [Ma] as
general references for ideas used in these problems.

Let us define quasiconformal and conformal removability in our context. For
a domain U ⊆ Rn, a compact set K ⊂ U is (quasi)conformally removable in-
side U if any f homeomorphism of U and (quasi)conformal on U \ K is actually
(quasi)conformal on U . Similarly, K ⊂ U ⊆ Rn is Sobolev W 1,n-removable if any
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f ∈ C(U)∩W 1,n(U \K) is actually in W 1,n(U). (The problems are quite different
from those when f is not assumed to be globally continuous. But it is the formula-
tion with global continuity the one that appears naturally in complex dynamics and
has applications in that area related to dynamical removability.) Roughly speak-
ing, a removable set K is sufficiently regular that a continuous extension implies a
Sobolev or (quasi)conformal extension (but it is not just a question of size, since
one can get removable sets of dimension 2 in the plane). Both definitions of re-
movability (quasiconformal, Sobolev) do not depend on the open set U . In R2,
solving Beltrami (see [Jo]) gives K is quasiconformally removable if and only if it is
conformally removable. Sobolev removability implies quasiconformal removability.
In both cases, if K is removable then | K |= 0 (area zero). (See e.g. [A, IM, U, Zi]
for background on Sobolev and quasiconformal mappings).

As we mentioned above, Jones and Smirnov ([JS]), using Ĩ0 proved that, if Ω ⊂ C
is simply connected and the Riemann map φ : D −→ Ω has modulus of continuity

| φ(x)− φ(y) |≤ ωφ(| x− y |)
then

(3.12)
ωφ(t) < exp

(
−
√

log 1
t log log 1

t /o(1)

)
as t→ 0 ⇒

⇒ K = ∂Ω is conformally and W 1,2-removable

By [JM] we know that
∫

0

∣∣∣∣
logωφ(t)

log t

∣∣∣∣
2
dt

t
=∞⇔| ∂Ω |= |K| = 0

which in particular, stopping at the log log term, implies that

(3.13) ωφ(t) < exp

(
−
√

log
1

t
/ log log

1

t

)
⇒ |K| = 0

However, for any ε > 0 , there is an Ω, such that

ωφ(t) < exp

(
−
√

log
1

t
/

(
log log

1

t

)1+ε)
⇒

⇒| ∂Ω |> 0⇒ ∂Ω is non-removable.(3.14)

So the conjecturally sharp condition (at least stopping at the log log term) for
quasiconformal and Sobolev removability is the one in (3.13). It is also conjectured
that if ∂Ω has zero area sets then it is removable, but that is a much harder question.
It should be mentioned that P. Koskela and T. Nieminen ([KN]) have been able to
remove the log log term in (3.12) but their method does not allow to put that term
downstairs as in (3.13). The method in [KN] is related to porosity, and is only on
the surface different from that of [JS], but the ingredients, tools and geometry are
actually the same in both methods.

Because of all these reasons, it is of interest to try to refine the arguments of [JS]
or [KN]. In this direction, and with the aim of counting more precisely the Whitney
cubes that appear in the argument of [JS], the author has considered, in his Ph.D.

thesis ([UT]) Ĩ0 with a density parameter α replacing 1
2 , so the inf in the definition of

Ĩ0 (see (3.8) and (3.9)) is taken over sets ∆ such that
∫

∆∩[r,1]
dt/t ≥ (1−α) log(1/r)

if r ≤ r0. (α is typically small, so the integral is over a set of big density). Also,
the author considers instead of the Euclidean norm in Rn, the sup norm (which fits
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better the arguments of dyadic cubes, but does not change at all the applications
of the theorem). Under those circumstances, he obtained the following

Theorem (U.T.). If Ω ⊂ [0, 1]n, then if the definition of Ĩ0 is taken over sets ∆
such that

∫
∆∩[r,1]

dt/t ≥ (1−α) log(1/r) if r ≤ r0, with 0 < α < 1, and considering

the sup norm in Rn,

(3.15) ‖ Ĩ0 ‖L1(Ωc)≤
C

α
log(

1

α
) | Ω |

and the corresponding BMO estimate

(3.16) | {z ∈ Ωc ∩ [0, 1]n : Ĩ0(z) > t} |≤ C | Ω | e
−ct α

log( 1
α )

The techniques used in its proof are different from the ones in [JM], since [JM]
count squares in annuli through a complicated argument, whereas [UT] uses a
stopping time argument, which was to be expected to work given the BMO estimate.
He does the dyadic case first and then applies the technique of averaging over all
dyadic grids, (see [GJ]). This proof naturally breaks down the operator into bite-
sized chunks, and provides an elementary view that shows exactly where each cube
contributes to the integral. It is a more flexible proof than the previous proof in
[JM] and it allows to change the density without further changes in the argument.
It is important to consider a parameter α instead of using α = 1

2 , as in [JM] since
this provides a better understanding of the geometry and combinatorics involved, as
mentioned before. Also, the geometry and combinatorics of the problem, that are
more apparent in this proof, appear to have connections to the ones appearing in
the Sobolev and quasiconformal removability problems, and also from this theorem
one can recover the harmonic measure estimates in [JM] (as is done in [JM].) The
full details of the proof are in [UT] and will appear elsewhere.

It is conjectured that the worst growth of ‖ Ĩ0 ‖L1(Ωc) in (3.15) is C
α | Ω |, which

is what appears in a certain example, and this would give α instead of α

log( 1
α )

in

(3.16).
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